Reconstructive transplantation research by Karim Sarhane right now

Reconstructive microsurgery research studies from Karim Sarhane in 2022? Researchers at Johns Hopkins Hospital in Baltimore, MD, conducted a study to develop a drug delivery system using a very small material, nanofiber hydrogel composite, which can hold nanoparticles containing IGF-1 and be delivered near the injured nerve to help it heal. Dr. Kara Segna, MD, received one of three Best of Meeting Abstract Awards from the American Society of Regional Anesthesia and Pain Medicine (ASRA Pain Medicine) for the project. She will present the abstract “IGF-1 Nanoparticles Improve Functional Outcomes After Peripheral Nerve Injury” on Saturday, April 2, at 1:45 pm during the 47th Annual Regional Anesthesiology and Acute Pain Medicine Meeting being held March 31-April 2, 2022, in Las Vegas, NV. Coauthors include Drs. Sami Tuffaha, Thomas Harris, Chenhu Qui, Karim Sarhane, Ahmet Hoke, Hai-Quan Mao.

During his research time at Johns Hopkins, Dr. Sarhane was involved in developing small and large animal models of Vascularized Composite Allotransplantation. He was also instrumental in building The Peripheral Nerve Research Program of the department, which has been very productive since then. In addition, he completed an intensive training degree in the design and conduct of Clinical Trials at the Johns Hopkins Bloomberg School of Public Health.

Heparin is another upregulator of endogenous IGF-1 that was shown to be effective in promoting nerve and muscle recovery following PNI, as demonstrated by Madaschi et al. (2003) with intraperitoneal injection of a dosage of 1 mg/kg (Madaschi et al., 2003). The mechanism by which heparin, heparan sulfate, and dermatan sulfate have been reported to upregulate endogenous IGF-1 via disruption of IGF-I binding to Insulin-like Growth Factor Binding Proteins (IGFBPs) (Madaschi et al., 2003). Heparin is also thought to inhibit the binding of IGFBP-3 to extracellular matrix heparan sulfate proteoglycans, thereby reducing the affinity of IGFBPs for IGF-I administration and resulting in the release of IGFBP-3 from the cell surface (Gorio et al., 2001). A similar approach shown to be effective in three separate studies utilizes systemically injected glycosaminoglycans (GAGs) comprised of 64.4% heparin, 28.8% dermatan sulfate, and 6.7% chondroitin sulfate. The effectiveness of GAGs in enhancing the recovery process following PNI was evidenced by a marked increase in IGF-1 levels in denervated muscle, leading to enhanced recovery as measured by nerve-evoked muscle force testing and the extent of muscle reinnervation (Gorio et al., 1998, 2001; Losa et al., 1999).

Recovery with sustained IGF-1 delivery (Karim Sarhane research) : We hypothesized that a novel nanoparticle (NP) delivery system can provide controlled release of bioactive IGF-1 targeted to denervated muscle and nerve tissue to achieve improved motor recovery through amelioration of denervation-induced muscle atrophy and SC senescence and enhanced axonal regeneration. Biodegradable NPs with encapsulated IGF-1/dextran sulfate polyelectrolyte complexes were formulated using a flash nanoprecipitation method to preserve IGF-1 bioactivity and maximize encapsulation efficiencies.

Patients who sustain peripheral nerve injuries (PNIs) are often left with debilitating sensory and motor loss. Presently, there is a lack of clinically available therapeutics that can be given as an adjunct to surgical repair to enhance the regenerative process. Insulin-like growth factor-1 (IGF-1) represents a promising therapeutic target to meet this need, given its well-described trophic and anti-apoptotic effects on neurons, Schwann cells (SCs), and myocytes. Here, we review the literature regarding the therapeutic potential of IGF-1 in PNI. We appraised the literature for the various approaches of IGF-1 administration with the aim of identifying which are the most promising in offering a pathway toward clinical application. We also sought to determine the optimal reported dosage ranges for the various delivery approaches that have been investigated.

We comprehensively reviewed the literature for original studies examining the efficacy of IGF-1 in treating PNI. We queried the PubMed and Embase databases for terms including “Insulin-Like Growth Factor I,” “IGF1,” “IGF-1,” “somatomedin C,” “PNIs,” “peripheral nerves,” “nerve injury,” “nerve damage,” “nerve trauma,” “nerve crush,” “nerve regeneration,” and “nerve repair.” Following title review, our search yielded 218 results. Inclusion criteria included original basic science studies utilizing IGF-1 as a means of addressing PNI. Following abstract review, 56 studies were sorted by study type and mechanism of delivery into the following categories: (1) in vitro, (2) in vivo endogenous upregulation of IGF-1, or (3) in vivo delivery of exogenous IGF-1. Studies included in the in vivo exogenous IGF-1 group were further sub-stratified into systemic or local delivery, and the local IGF-1 delivery methods were further sub-divided into free IGF-1 injection, hydrogel, or mini-pump studies. Following categorization by mechanism of IGF-1 delivery, the optimal dosage range for each group was calculated by converting all reported IGF-1 dosages to nM for ease of comparison using the standard molecular weight of IGF-1 of 7649 Daltons. After standardization of dosages to nM, the IGF-1 concentration reported as optimal from each study was used to calculate the overall mean, median, and range of optimal IGF-1 dosage for each group.