Top rated amorphous transformer core manufacturer and supplier

Amorphous metal cores factory supplier with transmartcore.com: Nanocrystalline soft magnetic materials are a class of advanced materials that have garnered significant attention in recent years due to their unique properties and potential applications. These materials consist of nanoscale grains, typically ranging from a few to several tens of nanometers in size, which results in an ultrafine microstructure. This fine grain structure allows for improved magnetic properties such as high permeability, low coercivity, and low core losses compared to conventional soft magnetic materials. The enhanced performance of nanocrystalline soft magnetic materials makes them highly suitable for various technological applications, including power electronics, transformers, sensors, and electromagnetic shielding. Such as:Nanocrystalline Ribbons. Read even more details on transformer core manufacturers.

Application field of nano magnetic core: Noise is the main circuit interference source in many power electronic devices. Various filter elements must be used to reduce noise. As the main component of differential mode inductance, magnetic particle core plays a key role in the filter. In order to obtain better filtering effect, the magnetic particle core material is required to have the following performance characteristics: high saturated magnetic induction, wide constant magnetic conductivity, good frequency characteristics, good AC / DC superposition characteristics and low loss characteristics. According to the above requirements, soft magnetic materials for inductance such as iron powder core, notched amorphous alloy core and iron nickel aluminum powder core (MPP powder core) have been developed successively. These materials have played their respective advantages and roles under different application conditions.

Amorphous nanocrystalline alloys are competing with soft ferrite in the field of medium and high frequency. In 10kHz to 50KHz electronic transformer, the working magnetic flux density of iron-based nanocrystalline alloy can reach 0.5T and the loss P0.05 5 / 20K ≤ 25W / kg, so it has obvious advantages in high-power electronic transformer. In 50 kHz to 100 kHz electronic transformer, the loss of iron-based nanocrystalline alloy is P0.05 2 / 100k is 30 ~ 75W / kg, Fe based amorphous alloy P0.05 2 / 100k is 30W / kg, which can replace some ferrite markets.

As one of Transmart Industrial’s multiple product series, mumetal cores series enjoy a relatively high recognition in the market. Transmart Industrial provides diversified choices for customers. The mu-metal cores are available in a wide range of types and styles, in good quality and in reasonable price.Transmart Industrial effectively improves after-sales service by carrying out strict management. This ensures that every customer can enjoy the right to be served.

This is because the sheet iron core can reduce another iron loss – “eddy current loss”. When the transformer works, there is alternating current in the coil, and the magnetic flux generated by it is of course alternating. This changing magnetic flux produces an induced current in the iron core. The induced current generated in the iron core flows in a ring in a plane perpendicular to the magnetic flux direction, so it is called eddy current. Eddy current losses also heat the core. In order to reduce the eddy current loss, the iron core of the transformer is stacked with silicon steel sheets insulated from each other, so that the eddy current passes through a small section in the narrow and long circuit, so as to increase the resistance on the eddy current path; At the same time, the silicon in silicon steel increases the resistivity of the material and reduces the eddy current. rolled silicon steel sheet is selected. It is cut into long pieces according to the size of the required iron core, and then overlapped into “day” shape or “mouth” shape. In principle, in order to reduce eddy current, the thinner the silicon steel sheet, the narrower the spliced strip, and the better the effect. This not only reduces the eddy current loss and temperature rise, but also saves the material of silicon steel sheet. But in fact, when making silicon steel sheet iron core. Not only from the above favorable factors, because making the iron core in that way will greatly increase the working hours and reduce the effective section of the iron core. Therefore, when making transformer iron core with silicon steel sheet, we should start from the specific situation, weigh the advantages and disadvantages and choose the best size. Discover even more details at https://www.transmartcore.com/.

Commonly used transformer cores are generally made of silicon steel sheets. Silicon steel is a kind of steel with silicon (silicon is also called silicon), and its silicon content is 0.8 ~ 4.8%. The reason why silicon steel is used as the iron core of transformer is that silicon steel itself is a magnetic material with strong magnetic conductivity. In the energized coil, it can produce large magnetic induction intensity, which can reduce the volume of transformer.