Erosion control methods

What is erosion with erosion control methods? Soil erosion is a gradual process of movement and transport of the upper layer of soil (topsoil) by different agents – particularly water, wind, and mass movement – causing its deterioration in the long term. In other words, soil erosion is the removal of the most fertile top layer of soil through water, wind and tillage. What Is Soil Erosion? A Soil Erosion Scientific Definition: According to a Pereira and Muñoz-Rojas (2017) synthesis, soil erosion is one of the major causes, evidence of, and key variables used to assess and understand land degradation. Soil erosion is a consequence of unsustainable land use and other disturbances, such as fire, mining, or intensive agricultural uses. The loss of soil may have serious impacts on the quantity and quality of soil ecosystem services, with serious economic, social, and political implications.

Every year, rivers deposit millions of tons of sediment into the oceans. Without the erosive forces of water, wind, and ice, rock debris would simply pile up where it forms and obscure from view nature’s weathered sculptures. Although erosion is a natural process, abusive land-use practices such as deforestation and overgrazing can expedite erosion and strip the land of soils needed for food to grow.

In rivers and estuaries, the erosion of banks is caused by the scouring action of the moving water, particularly in times of flood and, in the case of estuaries, also by the tidal flow on the ebb tide when river and tidewater combine in their erosive action. This scouring action of the moving water entrains (that is, draws in and transports) sediments within the river or stream load. These entrained sediments become instruments of erosion as they abrade one another in suspended transport or as they abrade other rock and soil as they are dragged along the river bottom, progressively entraining additional sediments as long as the river’s volume and velocity of the stream continues to increase. As the velocity of the river decreases, the suspended sediments will be deposited, creating landforms such as broad alluvial fans, floodplains, sandbars, and river deltas. The land surface unaffected by rivers and streams is subjected to a continuous process of erosion by the action of rain, snowmelt, and frost, the resulting detritus (organic debris) and sediment being carried into the rivers and thence to the ocean. Read additional info at https://ippio.com/erosion-control-guide-swppp-silt-fence-curlex-blanket/amp/ website.

Trees are widely known to impact the ecosystem hydrological cycle and resultant water availability and quality (Brown and Binkley 1994; Marc and Robinson 2007; Keenan and Van Dijk 2010; Carvalho-Santos et al. 2014). As vegetation cover plays a crucial role in erosion and runoff rates, afforestation is considered among the best options for soil conservation (Durán Zuazo and Rodríguez Pleguezuelo 2008; Lu et al. 2004; Gyssels et al. 2005; Panagos et al. 2015b; Ganasri and Ramesh 2016).

Planting grass in heavily eroded areas is called an agrostological measure. Ley farming practices cultivating grass in rotation with regular crops to increase the nutrient level in the soils. When the grass is harvested it can be used as fodder for cattle. For heavily eroded soil it is recommended to grown grass for many years to let the soils naturally repair themselves. This is the method of growing crops year-round without changing the topography of the soil by tilling or contouring. This technique increases the amount of water that penetrates the soil and can increase organic matter of the soil which leads to larger yields.